Motor Learning with Unstable Neural Representations
نویسندگان
چکیده
It is often assumed that learning takes place by changing an otherwise stable neural representation. To test this assumption, we studied changes in the directional tuning of primate motor cortical neurons during reaching movements performed in familiar and novel environments. During the familiar task, tuning curves exhibited slow random drift. During learning of the novel task, random drift was accompanied by systematic shifts of tuning curves. Our analysis suggests that motor learning is based on a surprisingly unstable neural representation. To explain these results, we propose that motor cortex is a redundant neural network, i.e., any single behavior can be realized by multiple configurations of synaptic strengths. We further hypothesize that synaptic modifications underlying learning contain a random component, which causes wandering among synaptic configurations with equivalent behaviors but different neural representations. We use a simple model to explore the implications of these assumptions.
منابع مشابه
EMG-based wrist gesture recognition using a convolutional neural network
Background: Deep learning has revolutionized artificial intelligence and has transformed many fields. It allows processing high-dimensional data (such as signals or images) without the need for feature engineering. The aim of this research is to develop a deep learning-based system to decode motor intent from electromyogram (EMG) signals. Methods: A myoelectric system based on convolutional ne...
متن کاملIncreasing Autonomy of Learning Sensorimotor Transformations with Dynamic Neural Fields
In this paper, we introduce a neuraldynamic architecture that enables autonomous learning of sensory-motor mappings in a closed behavioral loop. Dynamic neural fields ensure stability of perceptual and motor representations, a neural-dynamic representation of the condition-of-satisfaction autonomously terminates the current action and enables activation of the next action, triggering a transien...
متن کاملRepetitive Transcranial Magnetic Stimulation to the Primary Motor Cortex Interferes with Motor Learning by Observing
Neural representations of novel motor skills can be acquired through visual observation. We used repetitive transcranial magnetic stimulation (rTMS) to test the idea that this "motor learning by observing" is based on engagement of neural processes for learning in the primary motor cortex (M1). Human subjects who observed another person learning to reach in a novel force environment imposed by ...
متن کاملLearning Document Image Features With SqueezeNet Convolutional Neural Network
The classification of various document images is considered an important step towards building a modern digital library or office automation system. Convolutional Neural Network (CNN) classifiers trained with backpropagation are considered to be the current state of the art model for this task. However, there are two major drawbacks for these classifiers: the huge computational power demand for...
متن کاملTwo Novel Learning Algorithms for CMAC Neural Network Based on Changeable Learning Rate
Cerebellar Model Articulation Controller Neural Network is a computational model of cerebellum which acts as a lookup table. The advantages of CMAC are fast learning convergence, and capability of mapping nonlinear functions due to its local generalization of weight updating, single structure and easy processing. In the training phase, the disadvantage of some CMAC models is unstable phenomenon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuron
دوره 54 شماره
صفحات -
تاریخ انتشار 2007